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Introduction

Pattern Firing occurs when a system fires a pre-assigned
number of rounds to engage a given target more or less
simultaneously, and it is capable of seclecting individual
aiming-points for these rounds (allowing ‘offsets’). Many
military OR problems concern Pattern Firing, Classical
examples have been documented at length,' and they remain
to be important in modern air-to-ground operations, naval
operations, tank gunnery, missiles and canister artillery, to
name only a few immediate application areas.

We consider the siteation where round-to-round (ballistic)
errors are negligible compared to the aiming (systematic)
errors. This assumption may be wvalid in many firing
situations such as aerial bombardment, which may be
subject to relatively small dispersion bul to relatively
significant aiming error. David and Alalouf® noted that
when the target and the distribution of the hit displacements
are one-dimensional (‘linear target’), and when there is
no round-to-round error, the optimal aiming points that
maximize the probability to hit the target by ar least one of
several identical rounds are casily calculable. Specifically,
envision a linear target of width 2a (eg, a pipeline with
cookie-cutter damage function of distance a) and a lateral
systematic error for all # aiming points that is symmetrical,
with, say, a standard deviation «._ If the origin is at the target
midpoint (eg, the pipeline itself), then the optimal lateral
aiming points c; for rounds i= 1, ..., n are independent of 7,
and they are given by:

(a) If » is even, n=2k: ¢| = —(2k—1)a, ¢z =—(2k—=3)a, ...,
Ck==—d, €k + | =0, Ck 4. 3= 34, ..., cp=(2k—1)a,
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(b) If nis odd, n=2k+1: ¢, ==2ka, ¢;=—(2k=-2)a,...,
&= =24, Ej,+|=ﬂ, £*+g=2d.....l:n=23m'.

This holds true for any unimodal emor distribution,
symmetric around zero (eg, a Gaussian unbiased error).
Note that the aiming poinis are symmeirical around the
target centre and are equally spaced along the length of the
lingar target (in the above application, along the widrh of
the pipeline).

The rigorous proof in David and Alalouf® progresses
gradually along three lemmas, and it can be visualized
informally as follows: think of the problem as if there were a
point target at the origin of an x—y plane, and each delivery
round is tantamount to sliding a stick, along the y-axis, in
order to cover the origin. Each stick is of length 2a. Firstly,
there should be no holes ("gaps’) between the sticks. This is
shown by way of contradiction, using the two-sided drop-ofT
of probability at the tails of the error-distribution. Secondly,
once it is known that ‘one big stick” is to be thrown, the same
argument as above yields that the centre of the stick should
be aimed at the point target. Thirdly and finally, it is now
obvious that the stick has to be stretched as long as possible
with overlapping among the individual sticks. This ‘No
Overlap Ne Gap' principle, together with symmetry,
unequivocally give (a) and (b) above,

A generalization

The stick metaphor gives rise to the idea that the original
sticks that belong to the » rounds need not be of the same
size. They do not even have to evolve from symmetric
vulnerability relative to the middle of the target (a target
may be more vulnerable at one side than at the other).
Specifically, we assume from now on that round |,
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i=1,...,m kills the linear target if it hits at most 5§, meters
before the target centre (‘short”), or at most L, meters
beyond the target center (‘long"). The difference among the
individual 5's and L;s reflects the difference among the
various munitions. It may also arise because of different
targel’s presented depths: the “linear” target in the plane may
have a long second dimension, perpendicular to the direction
at which the n rounds may be dropped. The attacker may
choose to engage this target at various locations along its
second dimension. Indeed, consider an aircraft carrying n
bombs in order to hit a road or a pipeline. The only source
of error is assumed to be the firing computer target location
error, and it is common to all bombs. The bombs may incur
dilferent lethality against the road, or the bombs may still be
identical, but the pilot, swooping down over the road more
than once, elects to release them at different locations along
that road. Airforce OR analysts may face such intriguing
problems when targel roads or other types of linear targets
extend ower water: il the bomb misses the physical
boundanes of the line, that bomb is totally ineffective.
However, if it hits the line, it is many-fold more effective
than a bomb, which hits the line on the ground. The ensuing
optimization problem of this case is, however, beyond the
scope of the present prototypical model.

As before, let the aiming point of round i be ¢;. relative to
the target centre (eg. the median of a road). The new result is
as follows.

Proposition Suppose n rownds are fired subject o a
systematic error only, with a symmetric, wnimodal error-
distribueion. Then the optimal aiming points in the different-
wedpon case are given by:

I-1 -
a=3 (Si+L)2=-Y_ (S +L)2+5 (1)
=0 =l

independently  of the error standard  deviation =, far
I=1,....n S and Ly are artificially set to zero.

Proof We choose an orientation as shown in Figure I: a
‘long’ hit is to the left of a point target on a one-dimensional
axis. Thus, the target is killed by round i if the realization x
of the aiming error X satisfies

=Ligse; + x=<5;
for all i, i=1, ...,n, or, alternatively,
=Li—6=x<§ —¢

(Recall that the aiming error is common to all rounds and
therefore x need not be indexed). The interval [-L; —c;, S,
—¢;] is called the Permissible Error Range (PER) of round i,
and is denoted by PER, Any aiming error within PER;
resuls in round i being effective. Its length, 5,4+ L, may be

P Error -X

Lyey  Syalet  [Se Lo Si<
oy —y—’
Gap Gap
Figure 1 Aiming-points and their respective FERS.

thought of as the length of a ‘stick’ thrown in round i
Figure 1 visualizes this concept as well.

We establish the ‘Mo Overlap No Gap' and Symmetry in
the different-weapon case, and treat the 'No gap’ part
first, that is, for all i, i=1.....n=1, ¢ 1—cs L+ Sy
See Figure 1. If not, there is some J such that
¢ra1=¢i=L;+ 8.1 +h, for h>0. Assume that ¢+ L;<0.
(A righe case: it is "right’ because PER; lies to the right of
zero).

l. Suppose j=1. ¢y =¢cx—L;—5:=h. The probability that
round 1 hits the target is FAl—¢ +5)—F=¢ =Li)=
.Ft-fj +L|+S_= +S| +ﬁ}—ﬂ-—f‘: +51+II}. The argu-
ments of F are positive, since —c2+ S+ h=—¢,=L;>0.
Thus, because the denvative of F decreases lor positive
values, this probability is maximized with h=0. (The
differentiability of F may be relaxed, but it helps in
presentation.) By replacing ¢; with ¢;*=¢3=L|—8:, we
increase the total objective by the resulting positive
difference for the first round.

2. Suppose j>1. Distinguish between the case where the
pair of aiming-points j and (/=1) also makes a gap, and
the case where it does not. If not, then ¢—¢; 1 <L, + &,
Define A* =min{h, L;_, + S—(¢;/—¢;—1)}. Change the jth
aiming-point to ¢* = ¢+ A*. (No change is made in the
other aiming-points.) It follows that this increases the
overall objective exactly by Pl—ci—Li=h*=X=
—e3—L3). If, however, there is an additional gap there,
that is, ¢—¢;—) < Ly—; + S; (see Figure 1), the condition of
the jth round is the same as that of the first round in the
case j= | above, and, by filling the gap in letting k=0, we
increase the objective probability exactly by the resulting
probability-increase for the jth round.

If ¢;+ L;>0 (a left case). then necessanly ¢;. | =5 1>0,
and a mirror analysis, distinguishing cases regarding round
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Jf=+ 1, may be carried out. In this time, pushing the gap down
to /i =0 relies on the increase of the density of F lor negative
values.

Now, with “No gap” established, the resulting expression
for the objective is P(—c,—L,=X<—¢;+ 5)). It is easy to
see, using the same properties of Fagain, that this expression
is maximized by letting e, + L,= —(¢; + 5). This is sym-
metry. The length of the total PER, TPER, is 2ic, + L.).

We conclude with showing the ‘No everlap” part. Indeed,
by contradiction again, if there is a round J, 1 <j<mn-1, such
that ¢ —¢+h=L;+5;.,. for k>0, we redefine the
aiming-points such that ¢*=c-h/2 for i=1,...,j=1, and
c* =¢;+ M2 for i=j.....n. Symmetry and *‘No gap' are
retained, and TPER is increased by h, increasing the total
kill probability as well. Thus, the original set of aiming-
points cannot be optimal.

(It is not difficult to extend the overall argument by
proving that if P is a probability measure on the real line
with a unimodal, symmetric density, and max P(4) is sought
over all Borel sets that have Lebesgue measure 2a >0, then
the solution is obtained taking 4 to be the interval [=a, a].
The extension is hardly of interest to air-bombers, though).

Letting now 1, 2. 3. ....n be the order of round delivery,
we invoke the ‘No Owverlap No gap’ and the symmetry
principles, to get that the optimal ¢'s must satisfy the
following set of independent linear equations:

-Li—a=8-a (Ne Overlap No Gap) (2a)
-Li-a=58-¢ (" (2b)
_LH-| —pa) = 8y — €y [”}

=Ly =t ==8 + (symmetry) (2n)

The result (1) may readily be seen to satisfy the set of
independent set of linear equations (2a)—{2n). O

Examples and comments

n! different optimal aiming points. Since the round delivery
sequence is arbitrary, and since all aiming-points must make
a symmetric ‘stick’, it follows that the maximum kill
probability may be attained by each one of the n! possible
orders of bomb releases. Each order induces, however, a
different pattern that is optimal, as implied by the respective
set of linear equations (2a)-(2n) above.

There are exactly n! optimal solutions—so that the order
ol releasing bombs does not affect optimality and therefore
it may be determined by operational considerations.

The kill probability. The total PER length. TPER. is
obviously 30, (5: + L;). If F is the cdf of X. then, by
symmetry, the maximal kill probability is 2F|TPER/2)—1.

Example: n= 2, Gaussian distribution

In this case a rigorous proof of the main result is available
straightforwardly, along traditional lines. Indeed,

P(X € PER)) + P(X € PER;) — P(X € PER, N PER,)
(3)

needs to be maximized, over ¢ and c;. We assume without
loss of generality that ¢ <.
Expression (3) translates to

fleye1) = Ol—¢y + §1) = O{—c; — L)
+ (-2 + §) - V(-2 - L)
= ®(min{—c; + 5,—¢c; + 52})
+ ®(max{=cy = Ly, —e2 — L2})

(4)

constrained such that the min should be no smaller than the
max. (# =1 has been assumed, without loss of generality. @
is the standard normal edf.)

If ey 4+ Ly= e5-8;, the two PERs do not intersect, and f
takes only the first two summands in (4). I we select ¢; such
that —c3+ S: <0, ®(=¢) 4+ 5))=D(—c,—L,) is increasing,
and the expression is maximized by the rightmost £, giving

a + L =C;—5'2 [5.5

In a similar way, if we start with ¢; such that —c3 + 53> 0,
and any ¢, such that ¢y + Lj< ¢;—8;. there is a possible
redefinition of ¢; and ¢3, obeying (5), which viclds a better
objective. Substituting (5) in the first line of (4), and
maximizing the unconstrained problem in ¢, then applying
(3) again, we readily get ¢ =(S;=5:—-L;=L;)/2, and
ca =[5 + 52+ L)—L3)/2, complying with (1).

If ¢; + Ly = ¢3-53, (intersecting PERs, one ‘stick’), we shall
assume that the min in (4) takes its value at —c; 4+ 5; and the
max at —e—Ly. (It is argued again that an equivalent such
stick may be arranged in all other cases, by a proper choice
of ¢; and &) We further take for granted that the stick-
aiming covers the point-target, that is, cx+L;>0 and
¢i—%;<0. Eqguation (4) reduces to

Floy.e2) =0i=c) + §)) = Fl—c2 — La)

Using the identity ¢'(x) = —xd¢i{x) for the standard normal
density, the sign of the determinant of the Hessian matrix of
JSeomes out easily to be that of =(¢)-8)) - (c2 + L), which is
positive. The second derivative of f with regard to ¢ is
positive too, so f is convex. It is constrained to the convex
(trapezoidal) area defined by 2o, =g+ L+ 5,
c1 =5, and ¢;2 Ly, and thus it takes its maximum on the
boundaries of this area. [t follows that (5) applies again, and
the rest is as before. Evidently, carrying on this line of
argument 1o higher #'s is highly tedious.
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A numerical example

Suppose three missiles are launched at an elongated
vertical antenna (or a tall and thin command building).
The missiles are zimed at three level points, where the
antenna shape or wulnerability differ, so that S=30
and L =060 for missile 1, §=20 and L =40 for missile 2,
and S=10 and L =70 for missile 3. The missiles share a
commaon (horizontal) aiming Gaussian error (there are no
vertical errors). The following table lists three of the six
possible optimal firing sequences. The aiming displacements
are horizontal, relative to the wvertical centre-axis of the
anlenna.

Firing Optinal Optimal  Optimal

seguence O 7 €3 Total PER
I1—=2—=3 -85 -5 45 [—115,115]
1—+3—=2 —83 -15 T3 [—115,115]
3=2=1 —-103 —15 33 [—115,115]

Il 7= 50, the odds of knocking down the antenna exceed

97%. If, on the contrary, &= 100, these odds go down to less
than 75% (see Figure 2).

Summary

Many military OR problems concern Pattern Firing where
each round of fire is aimed at different point. Classical
examples have been documented at length since the early
19505, and they remain important in many modern combat
situations such as air-to-ground operations, naval opera-
tions, tank gunnery, missiles and canister artillery. Optimiz-
ing the firing pattern is a typical problem in firing theory,
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Figure 2 Probability of knocking down the antenna as a
fenction of 7.

which has been considered analytically only in a ‘symmetric’
setting where the munitions are identical. Modern weapon
systems (eg, aircraft) typically carry several types of
munitions and therefore optimizing multiple asymmetrical
pattern firing has become an important problem. In this
Note, we describe such a firing situation and obtain for the
first time its optimal pattern.
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